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Integrated computational 
analyses reveal novel insights 
into the stromal microenvironment 
of SHH‑subtype medulloblastoma
Alexander P. Landry*, Nardin Samuel, Julian Spears & Zsolt Zador*

Medulloblastoma is the most common malignant brain tumour of childhood. While our understanding 
of this disease has progressed substantially in recent years, the role of tumour microenvironment 
remains unclear. Given the increasing role of microenvironment-targeted therapeutics in other 
cancers, this study was aimed at further exploring its role in medulloblastoma. Multiple computational 
techniques were used to analyze open-source bulk and single cell RNA seq data from primary 
samples derived from all subgroups of medulloblastoma. Gene expression is used to infer stromal 
subpopulations, and network-based approaches are used to identify potential therapeutic targets. 
Bulk data was obtained from 763 medulloblastoma samples and single cell data from an additional 
7241 cells from 23 tumours. Independent bulk (285 tumours) and single cell (32,868 cells from 29 
tumours) validation cohorts were used to verify results. The SHH subgroup was found to be enriched 
in stromal activity, including the epithelial-to-mesenchymal transition, while group 3 is comparatively 
stroma-suppressed. Several receptor and ligand candidates underlying this difference are identified 
which we find to correlate with metastatic potential of SHH medulloblastoma. Additionally, a 
biologically active gradient is detected within SHH medulloblastoma, from “stroma-active” to 
“stroma-suppressed” cells which may have relevance to targeted therapy. This study serves to further 
elucidate the role of the stromal microenvironment in SHH-subgroup medulloblastoma and identify 
novel treatment possibilities for this challenging disease.

Medulloblastoma is the most common malignant brain tumour in children, with an overall 5-year survival of 
approximately 70%. Once considered a single disease, it is now understood represent a collection of four molecu-
larly and clinically distinct subgroups, each with its own set of subtypes1–3. The molecular, developmental, and 
clinical landscapes of these subgroups have been well characterized over the last several years, and important 
differences in outcome and therapeutic vulnerabilities have been identified. For example, patients with Wnt-
subgroup tumours typically have excellent survival rates while the 5 year survival in group 3 is approximately 
20–30%; the SHH subgroup intermediate survival outcomes and TP53 mutations are associated with a higher 
risk phenotype2,4. The role of tumor microenvironment (TME), defined as the interactions between neoplastic 
and non-neoplastic cells, has received increasing attention from the oncology community for its ability to shape 
tumour biology and yield important therapeutic vulnerabilities5. However, its role in medulloblastoma has yet 
to be as comprehensively explored.

The study of TME has led to highly effective therapeutic options, such novel immunotherapies for melanoma6, 
lung cancer7 and hematological malignancies8. To date, our understanding of the immune and stromal com-
position in the medulloblastoma microenvironment remains in its early stages, though early evidence suggests 
key subgroup-specific signatures9. In particular, the SHH subtype appears to be enriched in both immune and 
stromal fractions and its constituent tumor-associated macrophages seem to play an anti-tumor role10. Addi-
tionally, placental growth factor has been proposed as a key mediator of tumor-stroma interactions in medul-
loblastoma with possible therapeutic appeal, though its subgroup-specific role is unclear11. In this exploratory 
study, we apply established computational methods to well-annotated bulk and single cell medulloblastoma 
transcriptomic data in order to better define its stromal microenvironment and identify targetable pathways 
with therapeutic potential.
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Methods
Data processing.  Bulk data was obtained from the open repository Gene Expression Omnibus12 under the 
accessions GSE852172 and GSE3738213, the latter was used as a validation cohort. Raw expression data was 
imported, background-corrected and quantile normalized with RMA, and log2 transformed before being used 
for subsequent analysis. Single cell data was obtained using the same platform, under the accessions GSE1199261 
and GSE15544614, the latter again being used as a single cell validation cohort. Expression data was normalized 
and scaled using the default parameters in the SEURAT​15,16 pipeline. Specifically, feature counts for each cell are 
divided by the cell’s total counts and multiplied by a scale factor (10,000, as default), natural log-transformed, 
then scaled and centered. Details on data procurement from original samples can be found in the cited publica-
tions.

Bulk purity analysis.  We applied the previously established tool ESTIMATE17 to bulk RNA expression data 
in order to extrapolate relative proportions of neoplastic, immune, and stromal cells for each tumour. All settings 
were kept as default. Briefly, this method compares expression data to “stroma” and “immune” signatures previ-
ously derived and validated on several tumor types. The proportion of neoplastic cells (labeled the “purity” of a 
tumour) was shown to correlate well with DNA copy number variation analysis. Stromal, and immune scores 
were compared between the four molecular subgroups, and 12 subtypes, of medulloblastoma using ANOVA and 
individual comparisons were performed with a t-test. Throughout the study, we consider a p-value < 0.05 to be 
significant.

Receptor/ligand analysis.  We used the FANTOM18 consortium of known receptor-ligand interactions to 
identify targetable extracellular molecules that may play a role in tumour microenvironment through cellular 
cross-talk between neoplastic and non-neoplastic cells. The details of this repository are described elsewhere in 
detail18. Briefly, the receptor-ligand interaction database was generated through the multi-step filtering of human 
protein-coding genes (HGNC) and extension of the existing databases Database of Ligand Receptor Partners 
(DLRP)19, IUPHAR20 and Human Plasma Membrane Receptome21. Receptor-ligand pairs were established by 
cell types and incorporated into an interactome model which allows the inference of interactions between two or 
even multiple cells22,23. In our analysis, we firstly defined the list of genes upregulated in medulloblastoma sub-
groups/single cell clusters then filtered these genes using FANTOM. This yielded a list of potentially targetable 
receptor-ligand pairs which underlie a particular phenotype.

Differential gene analysis.  In order to identify subgroup-specific drivers of stroma abundance, we applied 
differential gene expression (DGE) to ligands and receptors separately for relevant subgroups. Each gene was 
correlated to stroma score with a Pearson test; genes with absolute fold-change > 2 and p < 0.05 in the DGE and 
absolute correlation > 0.2 and p < 0.05 in Pearson correlation were selected as subgroup-specific “stroma drivers” 
or “stroma suppressors”, depending on their correlation to stroma score. Using the same approach, we explored 
the subgroup-specific correlations to stromal score for each identified receptor and ligand to identify differences 
in TME influence by subgroup.

WGCNA.  Weighted Gene Co-Expression Analysis (WGCNA)24,25 is a computational method used to identify 
co-expressed genes subserving a common biological function, a contrast to the more traditional single-gene 
approach to transcriptomic analysis. This both reduces the stochasticity associated with single-gene analysis and 
may yield new insights into a biological system, since meaningful biologic changes may be incurred by small 
perturbations in the expression of several genes along the same pathway26–29. Briefly, highly co-expressed genes 
are grouped into “modules”, whose overall expression is described by the value of the first principal component 
of the expression of its constituent genes, an established procedure. We applied WGCNA to bulk RNA-seq data 
using default parameters. The expression of select modules was also evaluated in the single cell data. Module 
function was annotated using the gene-enrichment tool Enrichr30,31.

Network analysis.  Receptors and ligands of interest were visualized as networks using Cytoscape32 for both 
bulk and single cell data. Nodes represent genes and edges weights correspond to Pearson correlations. Node size 
is made proportional to its closeness centrality, a measurement of its proximity to other nodes within a graph. 
Briefly, this assigns a numeric score to each node within a network which is inversely proportional to its average 
distance to all other nodes; thus, high closeness centrality is associates with the ability to propagate information 
throughout a graph with high efficiency. Therefore, nodes with the highest closeness centrality within a gene 
network are likely to portend significant influence on the overall output of the network.

Single cell analysis.  Single cell transcriptomic analysis relied on the well-established SEURAT​ pipeline. 
After preprocessing (described above), Uniform Manifold Approximation and Projection (UMAP)33 was used to 
plot and cluster the data in 2 dimensions with default parameters. Subgroup-specific ligand/receptor density was 
assessed with the same embedding, and cells with expression of many ligands/receptors were compared to those 
with few (exact cutoffs are subgroup-specific) using the FindAllMarkers function in Seurat (default parameters). 
A group’s list of defining genes (marker genes) was taken as all upregulated genes with an adjusted p-value of 
< 0.05, Marker genes were then annotated using the gene-enrichment platform Enrichr30,31 to characterize a 
group’s function, and relevant transcription factors/pathways (adjusted p < 0.05) were labelled.
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Inference of cell developmental potential.  In order to assess single cells for developmental potential, 
we implemented the recently developed CytoTRACE pipeline34. Briefly, this approach numerically defines the 
“developmental potential” (i.e. stemness) of a cell based on the number and functional diversity of the genes it 
expresses. This has been extensively validated against ground truth cell states and outperforms other comparable 
methods. We further verified these results using a complementary approach that computes validated gene signa-
ture scores35, where “stemness” is calculated as the scaled average expression of genes within the signature minus 
the scaled average expression of the remaining genes.

Computational analysis.  All analyses in this paper were performed using the openly available statistical 
software R36 (version 3.6.3).

Results
Patient demographics.  The bulk discovery dataset contains 763 primary medulloblastoma tumours. The 
mean age of patients at the time of sample acquisition is 10.4 years (SD 9.4 years) and 62% are male. The mean 
survival is 4.9 years (SD 3.8 years) from diagnosis. Patients are divided into group 3 (n = 144, 18.8%), group 
4 (n = 326, 42.7%), SHH (n = 223, 29.2%), and Wnt (n = 70, 9.2%) molecular subtypes. Of 573 patients with 
metastatic status annotated, 176 (30.7%) have metastatic tumours. Specifically, metastases are present in 43/109 
group 3 tumours (39.4%), 101/255 group 4 tumours (39.6%), 26/160 SHH tumours (16.3%), and 6/49 WNT 
tumours (12.2%). The bulk validation cohort has 285 primary medulloblastoma tumours. Mean age is 9.0 years 
(SD 5.9 years) and 72% are male. No tumours belong to the WNT subgroup; 51 (17.9%) are SHH, 46 (16.1%) are 
group 3, and 188 (66.0%) are group 4. Outcome data is not available in this cohort.

In the single cell discovery data, 7241 cells were amalgamated from 23 tumours, with a mean of 315 cells per 
tumor (range 52–507). Cells were divided into 7 group 3 tumours (n = 2448, 33.8%), 8 group 4 tumours (n = 1903, 
26.3%), 3 SHH tumours (n = 1124, 15.5%), and 5 WNT tumours (n = 1766, 24.4%) using the authors labels. In 
this cohort, 14/23 (60.9%) of tumours have metastases, corresponding to 64% of total cells. Specifically, meta-
static disease is present in 5/7 (71.4%) of group 3 tumours, 4/8 (50.0%) of group 4 tumours, 2/3 (66.7%) of SHH 
tumours, and 3/5 (60%) of WNT tumours. In the single cell validation cohort, 32,868 cells were amalgamated 
from 29 tumours, divided into 6 group 3 tumours (n = 10,175, 31.0%), 1 group 3/4 tumour (n = 2420, 7.4%), 12 
group 4 tumours (n = 13,491, 41.1%), 9 SHH tumours (n = 6044, 18.4%), and 1 WNT tumour (n = 738, 2.2%).

SHH‑subtype medulloblastoma is enriched in stromal signature.  We firstly explored the subgroup-
specific differences in neoplastic, stroma, and immune composition of medulloblastoma using ESTIMATE17, 
a well-established algorithm for assessing TME using bulk transcriptomics. We found statistically significant 
(ANOVA p < 0.05) differences between medulloblastoma subgroups, with the greatest effect size noted in the 
stromal population (Fig. 1A, left). Notably, the SHH-subgroup is significantly enriched in its stromal population 
compared to all other subgroups, while group 3’s stromal score is significantly suppressed compared to each 
other subgroup, which remains true in the validation cohort (Fig. 1A, right). We therefore focus on the SHH 
(“stroma-enriched”) and group 3 (“stroma-suppressed”) subgroups in subsequent analysis of tumor-stroma 
interactions in medulloblastoma. We further explored the above characteristics of stromal microenvironment 
in the more refined molecular subclasses of medulloblastoma defined through the integration of multimodal 
genomic data (Cavalli et al.2). Within this integrated classification, the four major medulloblastoma subgroups 
are refined to 12 subtypes. We find the highest stromal scores in SHH subtypes beta and gamma (Fig. 1B). By 
contrast, group 3 alpha is the most stroma suppressed.

Distinct receptor‑ligand interactions associated with SHH medulloblastoma subtype.  We 
next attempted to identify receptor-ligand interactions associated with the distinct stromal compositions of SHH 
and group 3 tumours, which may serve as targetable neoplastic-stromal communication pathways. We therefore 
investigated the expression patterns of known receptors and ligands from the FANTOM consortium. We found 
that subgroups separated well based on both receptor and ligand expression patterns using t-SNE representa-
tion (Fig. 1B). Differential gene expression identifies several SHH and group 3-specific receptors/ligands which 
correlate to stromal score (Fig. 1C). Interestingly, the majority of genes upregulated in SHH medulloblastoma 
correlate positively with stroma score and those upregulated in group 3 medulloblastoma correlate negatively 
to stroma score (the inverse is also true). This suggests that differences in stromal signature may be manifested 
through several differentially-expressed extracellular signaling mechanisms, a redundancy that will be impor-
tant to consider when designing therapeutics. We define SHH-stroma-drivers as ligands/receptors which are 
positively correlated to stroma score and either upregulated in SHH-subgroup or downregulated in group 3 
subgroup (cutoff fold-change 2, Pearson correlation 0.2, p < 0.05). By contrast, group3-stroma-suppressors are 
ligands/receptors which are negatively correlated with stroma score and either upregulated in group 3 or down-
regulated in SHH subgroup. For clarity, we will refer to the collection of SHH-stroma-drivers and group3-stroma-
suppressors as stroma-associates. As illustrated in Fig. 2A, strong differences are found in the expression of these 
stroma associates, and the relationships are held both in bulk validation and in single cell data. To explore the 
pairwise interactions within the group of stroma-associates, we carried out a network analysis in bulk and single 
cell data separately. This suggests a consistent central role of SHH-upregulated receptors HHIP, BOC, PRLR, 
CXCR4 and ligands SFRP1, SEMA6A, and ANGPTL2 (Fig.  2B). Notably, each stroma-associate’s correlation 
with stroma score is subgroup-specific (Fig. 2C), suggesting that one must consider its context and expression in 
each subgroup individually. Furthermore, correlation with stroma score is also subtype-specific within the SHH 
subgroup itself as illustrated in Fig. 2D.
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WGCNA further supports differences in TME between subgroups.  Next, we used a weighted gene 
co-expression network analysis (WGCNA) as a complementary approach to confirm ligand/receptor associates 
of SHH (“stroma-enriched”) and group 3 (“stroma-supressed”) phenotypes. We apply WGCNA to all genes 
in the bulk data, yielding 15 co-expression modules ranging in size from 115 to 2597 genes (Fig. 3A). Three 
modules with highest median meta-gene expression in the SHH subgroup (ANOVA p < 0.05) were extracted for 
further analysis, and their computed values in the validation cohort matched the relationships found in the dis-
covery cohort (Fig. 3B). Annotation of these modules identified two modules with strong enrichment with the 
process of “epithelial to mesenchymal transition”, a phenotype transition widely observed in solid neoplasia and 
associated with invasion and metastasis37 (Fig. 3C). Analysis stratified by subtype demonstrates that one module 
in particular is upregulated strongly in all SHH subtypes (Fig. 3D). This module is also strongly upregulated in 
the SHH subgroup in single cell data (Fig. 3E), as did known epithelial-to-mesenchymal marker genes ZEB1, 
TWIST2, and SOX9 (Supplemental Fig. 1).

Single cell analysis identifies expression gradient underlying TME in SHH‑medulloblas‑
toma.  We next investigated the cell-level gene expression programs associated with the distinct TME pheno-
types observed in SHH medulloblastoma (Fig. 4A). Firstly, independent UMAP clustering shows considerable 
intertumoral heterogeneity, such that each tumour is defined by a distinct cluster. We next investigate intratu-
moral heterogeneity and its relation to stromal interactions by investigating the number of subgroup-specific 
stroma-associates expressed by each cell. In the SHH subgroup, there appears to be a preserved biological gra-
dient within each tumour, evolving from cells expressing few SHH-stroma-drivers to those expressing many 
(Fig. 4A). Given that this pattern is observed within the data topology of UMAP clusters (a function of over-
all gene expression), this suggests fundamental differences in biology extending beyond the number of these 
stroma-associates expressed. Additionally, metastatic SHH-tumours are upregulated in SHH-stroma-drivers 
compared to non-metastatic tumours (Fig. 4A, p < 0.05), suggesting that “stroma-active” SHH-medulloblastoma 
cells play a role in metastatic spread.

We next investigated the gene expression programs associated with higher ligand/receptor abundance by 
comparing “stroma-active” SHH cells (those expressing > 5 SHH-stroma-drivers) to “stroma-inactive” SHH cells 
(those expressing < 2 SHH-stroma-drivers) (Fig. 4B). Marker genes defining “stroma-inactive” cells subserve 

Figure 1.   Stromal microenvironment is enriched in SHH-subtype medulloblastoma and suppressed in group 
3. (A) ESTIMATE calculation of stroma (upper) and immune (lower) scores by molecular subgroup. Discovery 
cohort is plotted on the left and validation cohort is on the right. (B) Boxplot of stromal score by molecular 
subtype (ANOVA p < 0.05). (C) Volcano plots of differentially expressed ligand (left) and receptor (right) genes 
for SHH (stroma-upregulated) and group 3 (stroma-downregulated). For each subgroup, comparison is made 
to the pooled amalgamation of the remaining 3 subgroups. Each receptor/ligand gene is coloured based on its 
correlation with stromal signature score, with red indicating positive correlation and blue indicating negative 
correlation. Those with absolute fold-change > 2 and absolute Pearson correlation > 0.2 (labeled) are selected as 
potential drivers of subgroup-specific stromal differences (drivers of stroma signature in SHH-subgroup and 
repressors of stromal signature in group 3).
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functions predominantly related to stemness/development with specificity toward neurodevelopment and neural 
function. In comparison, marker genes defining “stroma-active” cells also map onto developmental pathways with 
predilection for cell cycle functions as well as the epithelial to mesenchymal transition and immune development. 
From these results, we conclude that the SHH subgroup carries a spectrum of biology on the single cell level 
which is intimately associated with its stroma interactions. The apparently crucial role that the density of stroma-
associates plays in the topology of single cell data is independently validated, as shown in Supplemental Fig. 2.

Previous studies have demonstrated that intratumoral heterogeny is due partly to a distribution along a devel-
opmental hierarchy35, which can be characterized based on each cells “differentiation potential”. Importantly, 
we find a positive correlation between a SHH-subgroup cell’s developmental potential and the number of SHH-
stroma-drivers it expresses (Fig. 5, Pearson correlation 0.54, p < 0.0001). We also find that cells expressing more 
SHH-stroma-drivers are enriched in signatures related to cell cycling and stemness38. These findings are replicated 
in Supplemental Fig. 3 using the single cell validation cohort. In sum, we suggest that SHH-subgroup medul-
loblastoma exhibits preserved intratumoral heterogeneity marked by a developmental gradient from “stroma-
active” cells, characterized by high expression of SHH-stroma-drivers, high developmental potential, cycling cells, 
and enrichment of the EMT program to “stroma-inactive” cells, characterized by low expression of SHH-stroma 
drivers, less developmental potential, and enrichment of neurodevelopmental programs. Importantly, a greater 
number of “stroma-active” cells may increase risk of invasion and metastasis, and SHH-stroma-drivers may 
represent key therapeutic vulnerabilities of this medulloblastoma subgroup.

Figure 2.   Characterizing stroma-associated receptors/ligands in bulk and single cell data. (A) Boxplots 
comparing the expression of all receptors/ligands of interest (stroma-associates) between SHH and Group 3 
medulloblastoma. Genes expressed in < 1% of single cells are excluded, as are genes in the stromal signature 
panel. Discovery cohort is plotted on the left, bulk validation is right upper and single cell data is right lower. 
(B) Network analysis of genes from (C) in bulk (left) and single cell (right) data. Edge thickness is proportional 
to absolute Pearson correlation (minimum 0.6 in bulk, 0.2 in single cell, all p < 0.05), with red lines indicating 
negative correlation. Node size correlates with its closeness centrality. Blue nodes represent SHH-upregulated/
Group 3-downregulated/stroma-correlated genes, whereas green nodes represent Group3-upregulated/SHH-
downregulated/stroma-anticorrelated genes. Nodes with borders are receptors and those without are ligands. 
C: Heatmap indicating subgroup-specific Pearson correlations between stromal score and selected stroma-
associated genes from Fig. 1. Colour bar above represents correlation of receptor/ligand gene expression with 
subtype label. Note that GNB3 is both SHH-downregulated and Group 3-upregulated, while the reciprocal is 
true of BOC. (D) Heatmap indicating SHH subtype-specific Pearson correlations between stromal score and 
stroma-associated genes. Colour bar as in C.
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Discussion
The findings in this study demonstrate significant differences in the tumor microenvironment between medul-
loblastoma subgroups, with the SHH-subgroup enriched in the stromal population while group 3 is comparatively 
stroma-suppressed. We identify several ligands and receptors which drive this phenotype in the SHH (labeled 
SHH-stroma-drivers) and group 3 (labeled group3-stroma-suppressors) which may represent subgroup-specific 
therapeutic targets. We also find the epithelial-to-mesenchymal pathway, an important stroma-associated can-
cer target, to be enriched in the SHH-subgroup using multiple approaches. Single-cell expression data in SHH 
medulloblastoma suggests a biological gradient from “stroma-active” cells expressing several SHH-stroma-
drivers towards a “stroma-inactive” phenotype. Notably the “stroma-active” phenotype is less differentiated and 
is enriched in the epithelial to mesenchymal transition and immune development while “stroma-inactive” cells, 
with fewer SHH-stroma-drivers, have less developmental potential and enrich in functions related to neurode-
velopment. The stroma-suppressed state of group 3 medulloblastomas, and neurodevelopmental dependencies 
of “stroma-inactive” cells, suggests that unlike in the case of the SHH subgroup, their aggressiveness is not a 
function of microenvironment and that different treatment strategies should be sought.

The role of stroma in cancer biology.  The role of tumour microenvironment in cancer biology has 
received increasing attention in recent years, related largely to the profound impact of immune-targeted thera-
pies in cancers such as melanoma and non-small cell lung cancer. While immunotherapy in neuro-oncology 
remains in its infancy, we remain hopeful that the ongoing research efforts will prove fruitful in the near future. 
The investigation of tumour-stroma interactions represents another exciting avenue through which cancer may 
be targeted, though we continue to await the development of stroma-specific therapies. Importantly, the quest to 
subdue the most treatment-resistant of tumour cells is likely to require a multi-pronged strategy, especially given 
the long history of failed clinical trials in neuro-oncology. To this end, targeting the stromal fraction of TME may 
represent another avenue through which the tumour “ecosystem” can be disrupted. Importantly, stroma cells in 
TME are known to play key tumour-modulating roles and to promote chemoresistance, making them attractive 
(albeit complex) therapeutic targets39.

The epithelial to mesenchymal transition (EMT), which was strongly associated with the SHH-subgroup in 
this study, is crucial in the evolution of TME. In essence, the EMT is the process through which epithelial cells 

Figure 3.   Weighted gene co-expression network analysis (WGCNA) yields SHH-specific TME signatures from 
the whole transcriptome. (A) Dendrogram depicting gene clustering and module selection, where module 
groupings are annotated by the color bar below. (B) Boxplots of the meta-gene expression for each module with 
highest expression in the SHH subgroup. Computed meta-gene expression of the same modules in the bulk 
validation cohort are present below. (C): Module annotation using MSigDB Hallmark genes. Only functions 
with adjusted p < 0.05 are included, and no more than 5 are included for each module. (D) Meta-gene expression 
of the black and greenyellow modules by molecular subtype in the discovery cohort. Note that the black module 
is strongly upregulated in all 4 SHH subtypes. E: UMAP plot of single-cell data, coloured by the meta-gene 
expression of the black module. The adjacent violin plot demonstrates significant upregulation in the SHH 
subgroup, which is consistent with bulk results.
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Figure 4.   Characterization of stroma-associated single cell programs in SHH subtype. (A) UMAP plots of 
single cell transcriptomic data from SHH medulloblastoma. Cells are coloured based on the number of stroma-
associated ligands (left) or receptors (right), as identified in Fig. 2. Above histograms represent the respective 
associated frequency distributions of ligand/receptor expression per cell. Inset images are the same UMAP plot, 
coloured by tumor ID (left) and metastatic status (right; red = metastasis present). We note apparent gradients 
from low to high density within each individual tumour, which is emphasized by arrows. (B) Markers associated 
with low vs. high number of ligands (left) or receptors (right) expressed (labeled above). Yellow indicates higher 
expression, while purple indicates low expression. Key enriched transcription factors (TFs) and pathways 
(only those with corrected p < 0.05) are labeled below and coloured by function. We note a predominance of 
developmental programs in cells with few stroma-associated ligands/receptors, while those which express more 
such receptors/ligands appear to be enriched in cell-cycling, EMT, and immune function.
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detach from their extracellular scaffolding and mesenchymal programs are subsequently activated, resulting in a 
graded evolution of cell characteristics. The process is critical in embryogenesis and wound healing, and in cancer 
is associated with increased metastatic potential and chemoresistance40–42. This has been shown to hold true in 
SHH-medulloblastoma as well, wherein the transition is proposed to be mediated by VEGFA-NPR2 signalling43,44. 
This suggests EMT as a potentially targetable SHH-enriched driver of metastasis which warrants further study.

SHH‑subgroup‑drivers may represent therapeutic targets in medulloblastomas.  Several of the 
stroma-associated ligands and receptors identified in this study have previously been shown to be promising tar-
gets in SHH-subgroup medulloblastoma. Platelet derived growth factor A (PDGFA) has been shown to correlate 
with metastasis and migration in SHH cell lines, and PDGFRA inhibition was able to block PDFGA-mediated 
migration45. CXCR4 is an important chemokine receptor in cerebellar development and interacts with SHH 
signaling pathways. It is known to play a role in tumor microenvironment and is implicated in SHH medullo-
blastoma tumorigenesis; importantly, its inhibition has shown promise in medulloblastoma therapy46. BOC is a 
driver of SHH signaling and is associated with granule cell precursor proliferation and medulloblastoma tumo-
rigenesis; inactivation is associated with decreased medulloblastoma progression47. Similarly, MET is a marker 
of metastasis in SHH medulloblastoma, and it’s inhibition has been shown to decrease proliferation and induce 
tumor cell apoptosis48. NGFR (CD271) is a marker of SHH medulloblastoma, and CD271+ medulloblastoma 
cells exhibit increased Ras/MAPK signaling, invasion, and migration which can be successfully targeted with 
MEK inhibition. Paradoxically, low CD271 expression is correlated with worse outcome, which may indicate a 
slower cycling but treatment-resistant phenotype49. Overall, inhibition PDGFA, CXCR4, BOC, MET, and NGFR 
have all shown therapeutic promise in SHH-subgroup medulloblastoma.

While many tumour-stroma interactions appear to drive invasion and metastasis, this communication is com-
plex and bidirectional; some of the SHH-stroma-drivers identified in this study have been negatively associated 
with tumorigenesis and proliferation, though not specifically with metastasis. Blockage of Norrin, the protein 
product of the NDP gene, in SHH medulloblastoma has been shown to create a tumor-permissive, stromal-driven 
microenvironment50. PACAP, the product of ADCYAP1, is involved in the regulation of granule neuron precursor 
proliferation (the putative cell-of-origin of SHH medulloblastoma) and has been shown to antagonize Hedgehog 
signaling and reduce proliferation in SHH MB tumorspheres51. Similarly, HHIP reduces stromal-associated 
malignancy via inhibition of HH signaling52. These results show that TME interactions are highly complex, and 
the influence of each receptor-ligand interaction on a tumour ecosystem must be carefully considered.

Figure 5.   Establishing the developmental hierarchy of SHH medulloblastoma as a function of stromal 
activation. Top-left: t-SNE embedding of CYTOTRACE output, where less differentiated cells are coloured red 
and more differentiated cells are coloured blue. The same embedding is coloured by ligand (top-middle) and 
receptor (top-right) density of stroma-associates, suggesting “stroma-active” cells have greater developmental 
potential than “stroma-inactive” cells. Boxplots are used to compare stemness and cycling properties of cells 
expressing < 2, 2–5, and > 5 receptors and ligands, using both CYTOTRACE output and previously established 
“stemness” and “cycling” gene signatures. ANOVA p < 0.0001 in all cases.
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The effects of the remainder of the SHH-stroma-drivers on medulloblastoma are less clear. Transforming 
growth factor beta (TGF-B) signaling is known to antagonize the SHH pathway in medulloblastoma and has been 
shown to modulate invasiveness in a context-dependent fashion53. SFRP1, a WNT inhibitor and marker of SHH 
medulloblastoma, is a downregulated tumour suppressor in all other subgroups; it’s role within the SHH subgroup 
is sunclear54. SEMA6A is involved in neuronal differentiation and has also been shown to be a marker of SHH 
medulloblastoma1, though exhibits tumor suppressive effects in groups 3 and 455. ROBO2 is part of the SLIT/
ROBO complexes, which plays a role in neural and vascular development56. They may act as tumor suppressors 
or oncogenes, depending on the context, though the specific role of ROBO2 in medulloblastoma is unclear. The 
prolactin receptor (PRLR) was shown to play an intimate role in a mouse model of cancer-fibroblast interactions 
by mediating micrometastases via COX-2; COX-2 inhibition was shown to reduce tumorigenesis57. It’s role in 
medulloblastoma is unclear. Similarly, in a bioinformatics-driven model of gene expression in medulloblastoma, 
ANGPTL2 is proposed as one of several possible driver copy number alterations of the SHH subgroup, though 
further confirmation is necessary to better understand its role58. It is involved in tissue repair and angiogenesis 
and may function as either a tumor promotor or inhibitor, depending on the cancer59,60. In summary, many SHH-
stroma-drivers identified in this study are known to play key roles in TME; those whose role in medulloblastoma 
have yet to be elucidated warrant further in-depth investigation.

Limitations and future directions.  Some study limitations should be noted. Firstly, the datasets utilized 
in this study are derived from prior studies and thereby limit our ability to compare datasets given differences in 
data procurement and processing. Some samples from the single cell data have been enriched in neoplastic cells 
through counter-selection for CD45 marker, limiting the ability to directly assess cellular cross-talk between 
malignant and non-malignant cells. In addition, we do not have complete clinical annotation of the single cell 
data, which may have allowed for more comprehensive analysis. Nevertheless, the objective of this work was to 
use computational techniques in order to identify novel avenues for therapy which can subsequently be tested 
in more rigorous fashion.

Given these identified receptors and ligands, we would hope to target them in subgroup-specific cell lines 
and/or animal models to assess for clinical viability. This may lead to novel clinical trials targeting stromal 
microenvironment of medulloblastoma.

Conclusions
This study is among the first to investigate subgroup-specific stromal TME in medulloblastoma. By applying 
computational methods to bulk and single cell data, we find the SHH-subgroup to be stroma-enriched, whereas 
group 3 tumours are relatively stroma-suppressed. We identify multiple receptor-ligand drivers of these pheno-
types, some of which may yield novel therapeutic targets. Single cell transcriptomics reveals important intratu-
moral dynamics within the SHH subgroup, which associate intimately with the expression of stroma drivers. We 
propose the notion that the “stroma-active” SHH tumour cells play a key role in recurrence, and that identifying 
their vulnerabilities will be important to controlling this challenging and heterogeneous disease. The successful 
treatment of highly resistant medulloblastoma cells may ultimately require a subgroup-specific multi-pronged 
approach which targets cancer cells, stromal cells, and immune cells simultaneously. Future studies should be 
aimed at further investigating the candidate therapeutic targets identified in this study.
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